En ligne depuis le 19/06/2020
4.1/5 (9)

Description
L'objectif de ce parcours est de découvrir les grandes problématiques actuelles en matière d'environnement. Ces problématiques renvoient d'une part aux limites planétaires et à la capacité des écosystèmes à supporter les pressions qui ont pour principale origine les activités humaines. Le changement climatique et l'érosion de la biodiversité sont au cœur de ces questions. Elles renvoient d'autre part à la finitude des ressources naturelles, comme par exemple les ressources minérales et énergétiques. La question posée est alors celle de l'épuisement de ces ressources, qui requiert à la fois de les gérer au mieux et de les substituer par d'autres ressources, plus renouvelables.
Ce parcours entend apporter des connaissances de base, pour tous les étudiants et ce quel que soit le parcours de formation qu'ils suivent. Il propose en complément des ouvertures disciplinaires pour montrer que ces questions engagent tous les domaines de connaissance et tous les secteurs d'activité de nos sociétés.
État
- Labellisé
Langues
- Français
Licence Creative Commons
- Partage des conditions à l'identique
- Pas d'utilisation commerciale
- Pas de modification
- Paternité
Nature pédagogique
- Cours
Niveau
- Bac+3
- Bac+5
Objectifs de Développement Durable
- 13. Lutte contre le changement climatique
- 15. Vie terrestre
- 7. Energie propre et d'un coût abordable
Thèmes
- Ecosystèmes et biodiversité
- Enjeux Climat/Énergie
Types
- Parcours thématique
Mots-clés

La biodiversité : définition, état, scénarios

Regards croisés sur l’enjeu biodiversité

Le climat : définition, état, scénarios

Regards croisés sur l’enjeu climatique

Les ressources naturelles (biologiques, minérales et…

Regards croisés sur la transition énergétique
Ce document est la transcription révisée, chapitrée et illustrée d’une vidéo du MOOC UVED « Économie circulaire et innovation ». Ce n’est pas un cours écrit au sens propre du terme ; le choix des mots et l'articulation des idées sont propres aux interventions orales des auteurs.
La finitude des ressources : les énergies fossiles et les métaux
Dominique BOURG,Professeur, Université de Lausanne
Nous allons aborder la pression que nous exerçons sur deux types de ressources qui sont vraiment essentielles à nos activités économiques. Le premier type de ressource, ce sont les énergies fossiles et le second ce sont les métaux et les minerais sous-jacents.
1. Les énergies fossiles
Le panorama est un petit peu paradoxal. D'une certaine manière nous avons déjà exercé une pression très forte et en même temps, concernant les seules énergies fossiles si on prend en compte le climat, nous avons trop d'énergies fossiles. Mais déjà, commençons à comprendre, je vais donner une image un peu simplette, mais qui va vous faire comprendre le problème. Commençons par l'énergie. Comme vous le savez, les hommes ne sont pas capables de produire de l'énergie. Ils sont capables de la capter, de la transformer et de la transporter. Chacune de ces opérations elle-même coûte de l'énergie. Pour capter de l'énergie, on a besoin d'énergie. Pour la transformer, on a besoin d'énergie. Pour la transporter, on a besoin d'énergie. La question énergétique est donc en quelque sorte un ratio. D'une part je vais chercher de l'énergie et puis j'en utilise donc qu'est-ce qu'il me reste ? Prenons le pétrole parce que c'est très simple. Autrefois, il y a 40, 50 ans dans la plupart des champs pétrolifères, quand j'investissais un baril, j'en retirais 100. On parle de EROEI, Energy Return On Energy Investment. La donne énergétique, c'est toujours un ratio. Il faut bien avoir ça en tête.
Pour aller chercher le pétrole, on a besoin d'énergie. C'est ce qu'on appelle le EROEI strict. Si je prends en compte l'énergie dont j'ai besoin pour transporter, transformer, on va parler d'EROEI étendu parce que j'élargis à d'autres activités qui elles-mêmes aussi consomment de l'énergie. De manière générale, il y a trop de pétrole sur Terre. Le GIEC demande à la communauté internationale qui d'ailleurs fait la sourde oreille de laisser 80 % des énergies fossiles, pas que le pétrole, mais aussi le charbon facilement accessibles dans le sous-sol.
2. La notion de « pic »
Reprenons maintenant la donne générale, qu'est-ce qui se passe ? Pour le faire comprendre, on va parler du pic pétrolier même si finalement la question du pic pétrolier ne se pose pas vraiment. Mais on aura peut-être des pics miniers. Donc on va essayer d'exprimer ça d'une façon un peu simplette en imaginant un pot de yaourt. Imaginez que par exemple, si on parle d'énergie, la cuillère elle-même soit en yaourt. Vous allez très vite comprendre que quand on commence, on a un rythme d'augmentation. Une fois qu'on a atteint la moitié du yaourt, c'est là qu'on ramasse le plus avec sa cuillère. Et plus on va commencer à exploiter l'autre moitié, surtout quand on va commencer à racler les bords, vous imaginez bien qu'à un moment donné, ça deviendrait absurde si la cuillère était elle-même en yoghourt. C'est-à-dire que je ramènerai moins de yoghourt que la cuillère n'en contient. Cela, c'est vraiment la donne énergétique. Et ça vaut aussi pour les minéraux. En d'autres termes, quand on a affaire à un gisement que ce soit les énergies fossiles ou que ce soit des métaux, au début de l'exploitation de ce gisement, on peut augmenter la quantité qu'on retire. Et puis, en gros une fois qu'on arrive vers la moitié, on va devoir progressivement diminuer la quantité soit d'énergie, soit de minerais qu'on va transporter. Et on a pendant très longtemps parlé de pic pétrolier. On voulait dire par là que lorsqu'on allait atteindre à peu près la moitié des réserves, on allait commencer cette fois-ci à voir nos capacités d'extraction diminuer. C'est bel et bien ce qui s'est produit. Si on regarde, je vous le disais tout à l'heure, autrefois, j'investissais un baril, j'en retire cent. Si on regarde toujours encore une fois le pétrole conventionnel, en moyenne aujourd'hui quand on a investi un baril, on en retire en moyenne à peu près 25. Et là, on est encore une fois pour les pétroles faciles à extraire, ce qu'on appelle les pétroles conventionnels. Sur le schéma que vous avez, vous voyez en vert la courbe pour les pétroles.
Vous voyez qu'à partir de 1964, petit à petit, le taux de découverte diminue. Et ça va être la même chose pour le gaz naturel, mais là, avec un écart de quinze années à peu près. Au bout de ces quinze ans, on voit aussi la courbe de découverte de gaz naturel diminuer. Et puis là, c'est au bout d'un moment, quand on arrive vraiment cette fois-ci à la moitié même des réserves, on a des difficultés. C'est probablement ce qui s'est produit, mais on ne peut pas en tirer les conséquences qu'on a tirées pendant des années. On a beaucoup spéculé sur ce pic pétrolier. En fait, on a trop d'énergie fossile dans nos sous-sols. Et si vraiment on voulait en retirer l'essentiel, on ne pourrait pas tout retirer. Je pense que vous l'avez compris avec mon histoire du yaourt. Mais si on voulait en retirer tout ce qu'on pourrait en retirer, on aurait l'augmentation de la température moyenne d'au moins 10 degrés. On ne peut pas imaginer plus grande catastrophe, ça serait très probablement la disparition de l'humanité. Donc nous avons trop d'énergie fossile, mais n'empêche quand même, nous avons un autre problème, c'est-à-dire que le coût d'extraction de ces énergies fossiles ne cesse de s'élever.
3. EROEI
Par exemple si je suis du côté des sables bitumineux de l'Alberta, quand j'investis un baril, j'en retire entre quatre et cinq. Or si je prends en compte les infrastructures, le transport, en fait au bout du compte, je n'investis pas simplement un baril en fait. Pour en retirer quatre à cinq, c'est trois. On voit bien que le solde est très maigre. On a cette difficulté-là même si encore une fois on n'a plus à se soucier du pic parce que de toute façon nous avons trop de réserve. Quand même, la qualité de l'énergie fossile que l'on peut retirer du sol maintenant n'est pas la même que celle d'autrefois. Elle nous coûte beaucoup plus énergétiquement. Donc le solde d'énergie qu'on peut utiliser est beaucoup plus réduit à ce qui pouvait être le cas autrefois. Et ça va largement au-delà du pétrole. C'est vrai de façon générale pour l'ensemble des énergies. Plus on va et plus finalement le fameux EROEI, la quantité vraiment disponible d'énergie, ne cesse de diminuer.
Si on regarde l'éolien, si on regarde le solaire photovoltaïque, ils ne sont pas à niveau aussi bas que les schistes bitumineux. Mais on est très loin quand même des débuts de la saga du pétrole. Pour ce qui est de l'éolien, on est sur une technologie aujourd'hui qui est à maturité. Mais en revanche, si on regarde le solaire et le solaire photovoltaïque, on a des marges devant nous. Aujourd'hui, c'est très difficile à calculer parce qu'évidemment le solaire c'est intermittent suivant l'année et la météo, on ne va pas retirer la même quantité d'énergie. Mais grosso modo, on parle d'un EROEI qui se situerait entre sept et huit. On espère d'ici quinze ans arriver à quinze, et encore quinze ans, les quinze années suivantes, donc trente ans en tout probablement se stabiliser vers trente. Et donc là, on aurait une énergie d'une qualité tout à fait correcte. Mais évidemment pas du tout avec la même quantité, la même abondance. C'est le même taux d'augmentation d'extraction annuelle que ce qu’on a connu au début de la saga du pétrole. De façon générale, en matière d'énergie, on est plutôt sur une pente descendante. On a sans doute mangé une part de notre pain blanc sans qu'on voit se profiler devant nous un monde sans énergie, mais un monde qui sera sans doute plus rare en termes d'énergie.
4. Les métaux
Pour les métaux, le raisonnement est analogue. Pour aller chercher les métaux, cela coûte aussi de l'énergie. De façon un peu abstraite et globale, les métaux en dehors du fer avec peut-être le magnétisme, le centre de la Terre, mais les métaux selon le second principe de la thermodynamique devraient être relativement répandus de façon homogène à la surface de la Terre et à l'intérieur de la croûte. Pour des raisons telluriques, parfois aussi pour des raisons bactériennes, il y a certaines concentrations près de la surface de la Terre, ce sans quoi d'ailleurs nous n'aurions jamais pu inventer la métallurgie. Les premiers métaux qu'on a exploités, c'est à partir d'une très forte concentration dans des météorites par exemple. Heureusement, il y a des endroits sur Terre où effectivement on rencontre une plus grande concentration. Du coup, l'énergie qu'on va dépenser est moins grande pour deux raisons. D'une part, on excave moins, plus ce qu'on va chercher est près de la surface, moins on va retirer de terre d'une part. D'autre part, plus le métal est concentré dans un minerai et moins on a à retirer aussi de terre. En revanche, plus le degré de concentration s'affaiblit, donc plus on va aller profondément et plus on va devoir consommer d'énergie. Aujourd'hui, on dépense 10 % de l'énergie primaire que l'on produit au monde pour nos activités extractivistes. S'il fallait par exemple chercher le cuivre dans son état de dispersion naturelle, s'il fallait qu'on produise les seize millions de tonnes que l'on produit chaque année, mais cette fois-ci on devrait aller chercher qu'un degré de dispersion important, c'est toute l'énergie primaire que l'on produit au monde qu'il faudrait dépenser. Donc on voit bien là qu'on a une limite. La limite, elle n'est pas simple. Je ne vais pas la désigner du doigt pour chaque métal. Dans X années, nous ne pourrons plus, et cetera. Mais on voit bien que la tendance sur laquelle on est d'une consommation énergétique de plus en plus grande. Par exemple pour certains métaux, il faut aller les chercher à moins 400, à moins 600 mètres sous le sol. On ne pourra pas le faire indéfiniment et pour tout. À cela s'ajoute que certains des métaux très importants aujourd'hui, par exemple tout ce qui est les high-tech, tout ce qui nous permet justement de consommer moins d'énergie, ces métaux sont des coproduits. On ne peut pas aller les chercher pour eux-mêmes. Mais on ne peut que les trouver parce qu'on exploite d'autres métaux.
5. Économie circulaire
On est confronté à une donne assez délicate, un petit peu comme pour l'énergie ou alors comme pour les ressources halieutiques. De manière générale, nous avons exercé une forme de razzia. On commence à voir certaines butées arriver. Ce ne sont pas des butées simples. Ce sont des butées qui sont à la croisée entre plusieurs facteurs, notamment la profondeur, la baisse des degrés de concentration et l'énergie qui du coup est requise pour aller chercher et ensuite traiter ces minerais. Donc, on voit bien de ce fait compte tenu de cette raréfaction progressive, de ce coût énergétique croissant de nos activités minières, on voit bien non seulement l'intérêt et l'opportunité, mais même au bout du compte la nécessité d'une économie plus circulaire parce qu'à un moment donné, on va totalement buter. Si je veux donner une sorte d'illustration tout à fait générale, en globalisant toutes les ressources avec un taux de croissance de 2 % de nos consommations de ressources, on tiendrait au mieux quelques centaines d'années sur une planète vierge. Ce n'est pas le cas. Pour reprendre le calcul d'un physicien, Gabriel Chardin, au bout de quelques milliers d'années, 5 à 6000 toujours avec ce taux de croissance de la consommation des ressources de 2%, on aurait dévasté, ratiboisé, détruit l'univers autour de nous avec un rayon de dix milliards d'années-lumière. Ce qui est quand même pas mal. L'économie circulaire c'est une nécessité et pas dans x temps, mais maintenant.
Contributeurs
BOEUF Gilles
Sorbonne Université
David Bruno
ancien Président , MNHN - Muséum national d'Histoire naturelle
Shin Yunne
IRD - Institut de Recherche pour le Développement
Ronce Ophélie
CNRS - Centre National de la Recherche Scientifique
Krief Sabrina
MNHN - Muséum national d'Histoire naturelle
Laurans Yann
IDDRI (Institut du développement durable et des relations internationales)
Sueur Cédric
Université de Strasbourg (UNISTRA)
Tavernier-Dumax Nathalie
Université de Haute-Alsace (UHA)
Larrere Catherine
Marniesse Sarah
AFD - Agence française de développement
Henin Jeanne
AFD - Agence française de développement
Roturier Samuel
Swynghedauw Bernard
Chartier Denis
Demeulenaere Elise
CNRS - Centre National de la Recherche Scientifique
HAINZELIN Etienne
CIRAD - Centre de coopération Internationale en Recherche Agronomique pour le Développement
Gignoux Jacques
CNRS - Centre National de la Recherche Scientifique
Peylin Philippe
LE TREUT Hervé
Jouzel Jean
Climatologue
Bousquet François
CIRAD - Centre de coopération Internationale en Recherche Agronomique pour le Développement
Planton Serge
climatologue et membre de l'association Météo et Climat
Bopp Laurent
directeur de recherche , CNRS - Centre National de la Recherche Scientifique
Watkinson Paul
Ribera Teresa
Lammel Annamaria
Université Paris 8
Guegan Jean-François
Leadley Paul
Roué Marie
CNRS - Centre National de la Recherche Scientifique
BRACONNOT Pascale
Hourcade Jean-Charles
CNRS - Centre National de la Recherche Scientifique
TULET Pierre
Fleury Cynthia
Bourg Dominique
philosophe et professeur , Université de Lausanne
Bourges Bernard
IMT Atlantique
BLANC Philippe
FILIPOT Jean-François
SCHMITTBUHL Jean
VAITILINGOM Gilles
Cemagref
CURY Philippe
OLIVES Régis
GRIJOL Karine
Véron Jacques
Ined - Institut National d'Études Démographiques
PRADILLON Jean-Yves
Lévêque François
Mines Paris-PSL
Brodhag Christian
Mines Paris-PSL